Cycloaddition of 1-Aryl-3-trimethylsiloxy-1,3-butadienes in the Synthesis of Natural Quinone Analogs^{*}

I. V. Nechepurenko, E. E. Shul'ts, and G. A. Tolstikov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia e-mail: niv@nioch.nsc.ru

Received October 13, 2000

Abstract—7-Hydroxy-5-(2-methoxyphenyl)-2-methyl-6-R-1,4-naphthoquinones, 8-hydroxy-1-(2-methoxyphenyl)-3-oxo-1,2,3,4-tetrahydro-9,10-anthraquinone, and 2-ethoxycarbonyl-8-hydroxy-1-(2-methoxyphenyl)-3-trimethylsiloxy-1,1a,4,4a-tetrahydro-9,10-anthraquinone were synthesized by reactions of 1-(2-methoxyphenyl)-2-R-3-trimethylsiloxy-1,3-butadienes with 2-bromo-5-methyl-1,4-benzoquinone and juglone. 1-Aryl-2-ethoxycarbonyl-3-trimethylsiloxy-1,3-butadienes reacted with 1,4-naphthoquinone to afford 1-aryl-2-ethoxycarbonyl-3-hydroxy-9,10-anthraquinones and their 4,4a-dihydro derivatives.

Diversity of structures and accessibility of siloxybutadienes in combination with their high reactivity and regioselectivity toward various dienophiles in the Diels–Alder reaction make them important synthons [1, 2]. Of particular interest is the use of siloxybutadienes in the synthesis of natural quinones and their analogs exhibiting important biological activity [1, 3, 4].

The present communication is an extension of our studies on the synthesis of quinoid compounds which are potential antiviral and cytostatic agents. As previously [5, 6], the synthesis of such compounds is based on the Diels-Alder reaction of 1-substituted 3-trimethylsiloxy-1,3-butadienes with quinones. The structure of the diene component allowed us to introduce into the target products 2-MeOC₆H₄ and $2,3-(MeO)_2C_6H_3$ fragments which are intrinsic to a number of naturally occurring compounds of the phenol and quinone series [3]. The initial siloxydienes were obtained by the known procedure [5, 6]. Crotonization of acetone and ethyl acetoacetate with benzaldehydes [7] gave 74–78% of α,β -unsaturated ketones I-III (Scheme 1). Ketones II and III were isolated as mixtures of Z and E isomers at a ratio of 1.6:1. Ketones I-III were treated with chlorotrimethylsilane in the presence of anhydrous zinc(II) chloride and triethylamine under argon to obtain

1-aryl-3-trimethylsiloxy-1,3-butadienes IV-VI in 55, 50, and 28% yield, respectively. Dienes IV-VI are high-boiling liquids which are stable under argon but undergo fast hydrolysis on exposure to atmospheric moisture. Table 1 contains the ¹H and ¹³C NMR spectra of compounds I-VI.

I, IV, Ar = 2-MeOC₆H₄, X = H; II, V, Ar = 2-MeOC₆H₄, X = CO₂Et; III, VI, Ar = 2,3-(MeO)₂C₆H₃, X = CO₂Et.

In the reactions of siloxybutadienes IV and V with 2-bromo-5-methyl-1,4-benzoquinone in boiling benzene the only products were naphthoquinones VII and VIII which were isolated in 35-40% yield (Scheme 2). Under similar conditions diene IV reacted with juglone IX with formation of tetrahydroanthraquinone X in 47% yield (Scheme 3). In contrast to

^{*} This study was financially supported by the Russian Foundation for Basic Research (project no. 00-03-32882).

VII, X = H; **VIII**, $X = CO_2Et$.

our previous data [5], we failed to isolate the primary adduct. Dehydrogenation is possible both by the action of atmospheric oxygen and by the action of juglone. The reaction of 2-bromonaphthoquinone with diene **IV** is accompanied by dehydrobromination and yields 36% of the expected arylanthraquinone **XI**. When the reaction was performed at room temperature in the presence of 0.5 equiv of $Zn(OTf)_2$ (Tf = tri-fluoromethylsulfonyl) [8], anthraquinone **XI** was isolated in 44% yield by column chromatography.

Diene V reacted with juglone (IX) in benzene under reflux (Scheme 4). The reaction was regioselective; unlike preceding experiment, we succeeded in isolating primary adduct XII in 66% yield. By column chromatography of the residue on silica gel we isolated anthraquinone derivatives XIII and XIV in 10 and 7% yield, respectively. In boiling benzene in the presence of Eu(fod)₃ (fod = 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octadionate) as catalyst anthraquinone XIV becomes the predominant product (yield 51%). In this case dihydroanthraquinone XIII is formed in 19% yield. Treatment of siloxy ester XII with methanol leads to formation of enol XV which was detected by ¹H NMR spectroscopy. The reaction of XII with potassium carbonate in methanol (reaction time 2 h) results in dehydrogenation with formation of 85% of dihydroanthraquinone XIII. We also failed to isolate primary adduct of diene V and naphthoquinone **XVI** (in benzene under reflux); by column chromatography on silica gel we isolated compounds XVII and XVIII in 18 and 25% yield, respectively. By addition of diene VI to naphthoquinone **XVI** we succeeded in isolating anthraquinone derivatives XIX and XX in 32 and 8% yield, respectively. Previously [6], we detected neither primary siloxy adduct nor tetrahydroanthraquinone in the reactions of 2-ethoxycarbonyl-1-(4-methoxyphenyl)-3-trimethylsiloxy-1,3-butadiene with 1,4-quinones. The yields, IR and UV spectra, and elemental analyses of naphthoquinones VII and VIII and anthraquinones X-XIV and XVII-XX are given in Table 2.

The structure of the newly synthesized naphthoand anthraquinone derivatives was deduced from the ¹H and ¹³C NMR spectra (Tables 3, 4). Mutual arrangement of the aryl substituent and methyl group (in compounds **VII** and **VIII**) or hydroxy group (in **XIV**) was determined on the basis of multiplicities of signals from the carbonyl carbon atoms in the ¹³C NMR spectra. The following data were obtained for naphthoquinone **VIII**: C¹, $\delta_{\rm C}$ 183.5 ppm, d.d, ³*J*(C¹–3-H) = 5.4, ³*J*(C¹–8-H) = 3.5 Hz; C⁴, $\delta_{\rm C}$ 183.9 ppm, d, ²*J*(C⁴–3-H) = 4.4 Hz. It is known that the constant ³*J*(C¹–3-H) in naphthoquinone fragment is the greatest, as compared to ³*J*(C¹–8-H) and ²*J*(C⁴–3-H); it ranges from 6 to 7.5 Hz [9]. These

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 37 No. 9 2001

V, XII, XIII, XIV, XV, Ar = 2-MeOC₆H₄; VI, XIX, XX, Ar = 2,3-(MeO)₂C₆H₃; IX, XII, XIII, XIV, XV, R = OH; XVI, XVII, XVII, XIX, XX, R = H; XII, R' = SiMe₃; XV, R' = H.

findings indicate that the methyl group in naphthoquinone **VIII** occupies position 2 rather than 3.

In the ¹³C NMR spectrum of anthraquinone **XIV** the carbonyl carbon signal (C⁹) is displaced downfield ($\delta_{\rm C}$ 187.5 ppm), and the C¹⁰ atom gives a signal at $\delta_{\rm C}$ 182.1 ppm. The downfield shift of the C⁹ signal is caused by the effect of the hydroxy group in position 8 ($\Delta\delta_{\rm C}$ 5.4 ppm for C⁹ and -0.7 ppm for C¹⁰) [10]. The signal at $\delta_{\rm C}$ 187.5 ppm (C⁹) is a singlet, and that at $\delta_{\rm C}$ 182.1 ppm (C¹⁰) is a triplet with the coupling constants ${}^{3}J(C^{10}-4-H) = 3.4$ Hz and ${}^{3}J(C^{10}-5-H) =$ 3.4 Hz. The ${}^{3}J$ values coincide with the known data (3-4.5 Hz [9]), and the signal multiplicities indicate that the OH and Ar substituents occupy positions 1 and 8. Likewise, the carbonyl carbon (C^9) signal in the spectrum of tetrahydroanthraquinone **X** is displaced downfield (δ_C 190.1 ppm), the C¹⁰ signal is observed at $\delta_{\rm C}$ 184.0 ppm, and unconjugated carbonyl group (C³) is characterized by a chemical shift δ_{C} of 204.8 ppm. In the monoresonance spectrum of X the signal at δ_{C} 184.0 ppm (C¹⁰) is split due to coupling with 5-H, 4α -H, and 4β -H; it appears as a broadened multiplet with a more complex structure than that of the multiplet signal at $\delta_{\rm C}$ 190.1 ppm (C⁹). These data allowed us to locate the OH and Ar substituents at positions 1 and 8, respectively.

The ¹³C NMR spectra of dihydroanthraquinones **XVII** and **XIX** should be characterized by more upfield signal from the conjugated carbonyl group (C⁹, $\delta_{\rm C}$ 182.4–182.9 ppm), as compared to the C¹⁰ signal ($\delta_{\rm C}$ 184.0–185.2 ppm). Using the increments for hydroxy group (see above), we obtained with

a good accuracy the experimental chemical shifts of C⁹ and C¹⁰ in compounds **XIII** and **XIV**. In keeping with the monoresonance spectrum of **XI**, the down-field signal belongs to the carbonyl carbon atom C¹⁰, and the upfield signal, to C⁹. The signal at $\delta_{\rm C}$ 183.8 ppm is a triplet with the coupling constants ${}^{3}J({\rm C}^{10}-4-{\rm H}) = 3.7$ and ${}^{3}J({\rm C}^{10}-5-{\rm H}) = 3.7$ Hz; it corresponds to C¹⁰. The signal at $\delta_{\rm C}$ 182.2 ppm (C⁹) is a doublet with ${}^{3}J({\rm C}^{9}-8-{\rm H}) = 3.4$ Hz.

EXPERIMENTAL

The IR spectra were recorded on a Specord M-80 spectrometer in KBr. The UV spectra were measured from solution in ethanol ($c = 10^{-4}$ M) using a Specord UV-Vis spectrophotometer. The ¹H NMR spectra were obtained on a Bruker WP-200SY instrument at 200.2 MHz. The ¹³C NMR spectra were recorded on a Bruker AC-200 spectrometer (50.323 MHz) in the JMOD and monoresonance modes; samples were prepared as 5-10% solutions in CDCl₃ or (CD₃)₂CO. The solvent signal was used as reference. The progress of reactions was monitored by TLC on Silufol UV-254 plates in the system chloroform-methanol (20:1); spots were visualized in UV light or with ammonia vapor. Column chromatography was performed on KSK silica gel (0-140) using chloroform and chloroform-methanol (100:1, 50:1, and 20:1) as eluent. Zinc(II) trifluoromethanesulfonate was synthesized by the procedure described in [11].

4-Aryl-3-buten-2-ones I–III. Ketone I was synthesized from acetone and 2-methoxybenzaldehyde under conditions corresponding to aldol condensation

Comp. no.	¹ H NMR spectrum, δ , ppm (<i>J</i> , Hz)	¹³ C NMR spectrum, $\delta_{\rm C}$, ppm
I	2.28 s (3H, MeCO), 3.89 s (3H, OMe), 6.57 d (1H, CH=, 16.5), 6.84 d (1H, 3'-H, 8), 6.84 d (1H, 4'-H, 8), 7.26 t.d (1H, 5'-H, 8, 1.5), 7.49 d.d (1H, 6'-H, 8, 1.5), 7.70 d (1H, CH=, 16.5)	
Шa	1.19 t (Z-Me), 1.33 t (E-Me), 2.17 s (E-MeCO), 2.32 s (Z-MeCO), 3.86 s (3H, OMe), 4.18 q (Z-CH ₂), 4.25 q (E-CH ₂), 6.84 m (2H, H _{arom}), 7.27 m (2H, H _{arom}), 7.75 br.s (1H, CH=)	13.9 q (Z-Me), 14.2 q (E-Me), 26.4 q (Z-C ¹), 30.6 q (E-C ¹), 55.0 q (E-OMe), 55.2 q (Z-OMe), 60.7 t (CH ₂), 110.5 d (C ³), 120.4 d (Z-C ⁶), 120.5 d (E-C ⁶), 122.5 s (E-C ³), 122.7 s (Z-C ³), 129.2 d and 131.6 d (Z-C ⁴), C ⁵), 130.2 d and 131.4 d (E-C ⁴ , C ⁵), 134.1 s (E-C ¹), 134.6 s (Z-C ¹), 135.8 d (E-C ⁴), 136.2 d (Z-C ⁴), 157.5 s (E-C ²), 157.8 s (Z-C ²), 164.0 s (E-CO ₂), 167.0 s (Z-CO ₂), 193.0 s (Z-C ²), 200.0 s (E-C ²)
Ш ^а	1.19 t (Z-Me), 1.32 t (E-Me), 2.33 s (Z-MeCO), 2.18 s (E-MeCO), 3.79 s, 3.81 s, 3.82 s (2OMe), 4.16 q (Z-CH ₂), 4.24 q (E-CH ₂), 7.71 s (Z-CH=), 7.73 s (E-CH=), 6.88 m (3H, H _{arom})	13.8 q (Z-Me), 14.1 q (E-Me), 26.5 q (Z-C ¹), 30.8 q (E-C ¹), 55.7 q and 60.9 q (2OMe), 61.1 t (CH ₂), 114.1 s (Z-C ⁴), 114.6 s (E-C ⁴), 120.7 d and 123.8 d (Z-C ⁵ , C ⁶), 121.4 d and 123.9 d (E-C ^{5'} , C ^{6'}), 127.5 s (Z-C ³), 127.8 s (E-C ³), 135.0 s (E-C ¹), 135.6 s (Z-C ¹), 136.1 d (Z-C ⁴), 136.7 d (E-C ⁴), 148.5 s and 152.6 s (C ^{2'} , C ^{3'}), 164.2 s (Z-CO ₂), 167.2 s (E-CO ₂), 194.1 s (Z-C ²), 200.1 s (E-C ²)
IV	0.27 s (9H, Me ₃ SiO), 3.85 s (3H, OMe), 4.35 s and 4.40 s (2H, CH ₂ =), 6.57 d (1H, CH=, 15.5), 6.84 m (2H, H _{arom}), 7.08 d (1H, CH=, 15.5), 7.17 m (1H, H _{arom}), 7.41 m (1H, H _{arom})	0.2 s (Me ₃ SiO), 53.3 q (OMe), 96.4 t (C ⁴), 110.8 d (C ³), 120.8 d (C ⁶), 124.8 s (C ²), 126.0 s (C ¹), 126.8 d and 127.1 d (C ⁴ , C ⁵), 128.5 d (C ¹), 155.6 s (C ³), 157.1 s (C ²)
V	0.26 s (9H, Me ₃ SiO), 1.08 t (3H, Me), 3.77 s (3H, OMe), 4.10 q (2H, CH ₂), 4.41 s and 4.50 s (2H, CH ₂ =), 6.81 m (2H, H _{arom}), 7.19 s (1H, CH=), 7.19 m (2H, H _{arom})	-0.1 s (Me ₃ SiO), 13.7 q (Me), 55.1 q (OMe), 60.5 t (CH ₂), 94.9 t (C ⁴), 110.2 d (C ³), 120.1 d (C ⁶), 124.6 s (C ²), 125.5 d (C ¹), 128.4 d and 129.3 d (C ⁴ , C ⁵), 132.6 s (C ¹), 152.6 s (C ³), 157.1 s (C ²), 168.3 s (CO ₂)
VI	0.24 s (9H, Me ₃ SiO), 1.08 t (3H, Me), 3.65 s and 3.85 s (6H, 2OMe), 4.07 q (2H, CH ₂), 4.41 s and 4.49 s (2H, CH ₂ =), 6.84 m (3H, H _{arom}), 7.14 s (1H, CH=)	

Table 1. ¹H and ¹³C NMR spectra of ketones I-III and siloxydienes IV-VI in CDCl₃

^a Z/E ratio 1.6:1.

(crotonization); ketones **II** and **III** were obtained from ethyl acetoacetate and 2-methoxy- or 2,3-dimethoxybenzaldehyde, respectively, according to Knoevenagel (Cope modification) [7]. The products, *E* isomer of **I** and *Z*/*E* isomeric mixtures of **II** and **III**, were isolated in 74, 76, and 78% yield, respectively; bp 107–112 (1 mm), 145–146 (2 mm), and 161–163°C (3 mm).

1-Substituted 3-trimethylsiloxy-1,3-butadienes IV–VI. To a suspension of 5 mmol of anhydrous $ZnCl_2$ and 19 ml of triethylamine, heated to 80°C, we added with stirring under argon a solution of 50 mmol of ketone **I–III** in 30 ml of anhydrous acetonitrile and then 18.9 ml of chlorotrimethylsilane. The mixture was stirred for 5 h at 50°C and cooled, 250 ml of dry diethyl ether was added, and the precipitate was filtered off. The filtrate was evaporated under reduced pressure (water-jet pump), and the residue was treated with 100 ml of dry diethyl ether (as above). The solvent was removed, and the residue was distilled under reduced pressure. Compound **IV**: yield 55%, bp 96–

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 37 No. 9 2001

Table 2. Yields, melting points, IR and UV spectra, and elemental analyses of naphthoquinones VII and VIII and anthraquinones X-XIV and XVII-XX

Comp. Yield,		1	IR spectrum,	UV spectrum, λ_{max} ,	Found	l, %		Calculated, %	
no.	%	mp, °C	v, cm ⁻¹	1 nm (log ε)		Н	Formula	С	Н
VII	40	134–136 (decomp.)	3400, 1650, 1595, 1560, 1345, 1250	267 (4.34), 374 (3.41)	73.0	4.5	C ₁₈ H ₁₄ O ₄	73.4	4.8
VIII	35	155–157	3425, 1650, 1560, 1350, 1240, 1220	269 (4.44), 381 (3.32)	68.1	5.0	C ₂₁ H ₁₈ O ₆	68.8	4.9
X	47	213–215	3450, 1715, 1640, 1615, 1485, 1450, 1275, 1240	275 (4.11), 420 (3.57), 517 (3.16), 719 (2.71)	72.0	4.8	$C_{21}H_{16}O_5$	72.4	4.6
XI	36	264–266	3365, 1669, 1591, 1558, 1361, 1293	245 (4.50), 372 (3.51)	76.5	4.2	$C_{21}H_{14}O_4$	76.4	4.3
XII	66	155–159	3400, 1680, 1645, 1450, 1365, 1245, 840	233 (4.32), 352 (3.61)	65.4	6.1	C ₂₇ H ₃₀ O ₇ Si	65.6	6.1
XIII	10	198–200	3425, 1650, 1610, 1450, 1310, 1275, 1245, 1210	251 (4.30), 422 (3.64), 661 (2.30)	68.5	4.7	$C_{24}H_{20}O_7$	68.6	4.8
XIV	7	230–235	3400, 1640, 1560, 1455, 1455, 1225	272 (4.30), 409 (3.69)	68.6	4.7	$C_{24}H_{18}O_7$	68.9	4.3
XVII	18	168–172	3430, 1660, 1610, 1325, 1290, 1275, 1245, 1210	250 (4.30), 340 (3.48), 530 (2.70)	71.0	4.9	$C_{24}H_{20}O_{6}$	71.3	5.0
XVIII	25	205–208	3425, 1660, 1590, 1460, 1340, 1250	270 (4.30), 390 (3.65)	71.3	4.2	C ₂₄ H ₁₈ O ₆	71.6	4.5
XIX	34	152–155	3440, 1675, 1660, 1300, 1280, 1250, 1225	250 (4.48), 334 (3.52), 523 (2.72)	69.0	5.0	C ₂₅ H ₂₂ O ₇	69.1	5.1
XX	17	184–188	3425, 1670, 1660, 1590, 1460, 1340, 1250	272 (4.04), 370 (3.38)	69.1	4.8	C ₂₅ H ₂₀ O ₇	69.4	4.6

100°C (1 mm); V: yield 50%, bp 133–134°C (3 mm); VI: yield 28%, bp 158–164°C (2 mm). According to the ¹H NMR data, diene VI contained 20% of ketone III.

Reactions of siloxydienes IV–VI with 2-bromo-5-methyl-1,4-benzoquinone, 2-bromo-1,4-naphthoquinone, juglone (IX), and 1,4-naphthoquinone (**XVI).** *a*. A solution of 2–3.5 mmol of 2-bromo-5-methyl-1,4-benzoquinone, 2-bromo-1,4-naphthoquinone, juglone (**IX**), or 1,4-naphthoquinone (**XVI**) and 1.1–1.5 equiv of diene **IV–VI** in 20 ml of benzene was refluxed for 14–26 h under argon. The solvent was distilled off on a rotary evaporator, and the residue was ground with diethyl ether to isolate primary adduct **XII** or unchanged quinone **XVI**. The products were isolated from the filtrate by column chromatography. Compounds **VII–XI** and **XVII–XIX** were recrystallized from diethyl ether, and **XII–XIV**, from diethyl ether–hexane (1:2).

b. A suspension of 2 mmol of 2-bromo-1,4-naphthoquinone, 3 mmol of diene **IV**, and 1 mmol of zinc(II) trifluoromethanesulfonate in 15 ml of CH_2Cl_2 was stirred for 3 days at room temperature. The mixture was treated with 10 ml of 1 N HCl in THF and with chloroform (3 × 10 ml), washed with a saturated aqueous solution of NaCl (3 × 10 ml), and evaporated under reduced pressure. Column chromatography of the residue gave anthraquinone **XI** in 44% yield.

Comp. no.	Chemical shifts δ , ppm (J, Hz)
VII	2.03 s (3H, Me), 3.67 s (3H, OMe), 6.73 s (1H, 3-H), 6.90 d (1H, 6-H), 6.91 d (1H, 3'-H), 7.00 t (1H, 4'-H), 7.08 d.d (1H, 6'-H), 7.34 t (1H, 5'-H), 7.54 d (1H, 8-H), 11.04 s (1H, OH)
VIII	0.75 t (3H, MeCH ₂), 2.00 s (3H, Me), 3.68 s (3H, OMe), 3.93 q (3H, MeCH ₂), 6.75 s (1H, 3-H), 6.90 m (3H, 3'-H, 4'-H, 6'-H), 7.35 m (1H, 5'-H), 7.67 s (1H, 8-H), 11.04 s (1H, OH)
X ^a	2.65 d.t (1H, 2 α -H, $J_{2\alpha,1} = 1.5$, $J_{2\alpha,2\beta} = 14.5$, $J_{2\alpha,4\alpha} = 1.5$), 3.05 d.d (1H, 2 β -H, $J_{2\beta,2\alpha} = 14.5$, $J_{2\beta,1} = 7$), 3.35 d.t (1H, 4 α -H, $J_{4\alpha,2\alpha} = 1.5$, $J_{4\alpha,1} = 1.5$, $J_{4\alpha,4\beta} = 23$), 3.60 d (1H, 4 β -H, $J_{4\beta,4\alpha} = 23$), 3.85 s (3H, OMe), 5.18 d.t (1H, 1-H, $J_{1,2\alpha} = 1.5$, $J_{1,2\beta} = 7$, $J_{1,4\alpha} = 1.5$), 6.82 m (1H, H _{arom}), 7.01 m (1H, H _{arom}), 7.23 m (2H, H _{arom}), 7.28 (1H), 11.96 s (1H, OH)
XI ^a	3.66 s (3H, OMe), 7.01 m (2H, H _{arom}), 7.01 m (1H, 2-H), 7.14 m (1H, H _{arom}), 7.38 m (1H, H _{arom}), 7.68 m (2H, 6-H, 7-H), 7.79 m (1H, 4-H), 8.10m and 8.22 m (2H, 5-H, 8-H), 11.96 s (1H, OH)
XII	0.36 s (9H, Me ₃ SiO), 0.99 t (3H, MeCH ₂), 2.40 d.d (1H, 4β-H, 18, 8), 3.21 d.d (1H, 4β-H, 18, 8), 3.56 m (2H, 9a-H, 4a-H), 3.78 s (3H, OMe), 3.96 q (3H, MeCH ₂), 5.00 d (1H, 1-H, 5), 6.12 m (1H, 3'-H), 6.52 m (1H, 4'-H), 6.80 m (2H, 5'-H, 6'-H), 7.00 m (2H), 7.28 m (1H), 11.88 s (1H, 8-OH)
XIII	1.22 t (3H, Me CH ₂), 3.60 d.d (2H, 4-H, 9, 4), 3.71 s (3H, OMe), 4.12 k (3H, MeCH ₂), 5.30 d.d (1H, 4a-H, 4, 5), 6.80 m (2H, H _{arom}), 7.17 m (1H, H _{arom}), 7.17 m (1H), 7.53 m (1H, H _{arom}), 7.53 m (2H), 11.96 s (1H, 3-OH), 12.48 s (1H, 8-OH)
XIV	0.90 t (3H, Me CH ₂), 3.65 s (3H, OMe), 3.91 q (3H, Me CH ₂), 6.96 m (2H, H _{arom}), 7.25 m (2H, H _{arom}), 7.34 m (1H), 7.73 m (1H), 7.83 m (1H), 7.94 s (1H, 4-H), 12.54 s (1H, 3-OH), 13.67 s (1H, 8-OH)
XV	1.09 t (3H, Me CH ₂), 2.68 d.d (1H, 4α-H, 18, 8), 2.71 d.d (1H, 4β-H, 18, 8), 3.49 s (3H, OMe), 3.60 m (2H, 9a-H, 4a-H), 3.99 q (3H, MeCH ₂), 4.81 d (1H, 1-H, 5), 6.25 m (1H, H _{arom}), 6.50 m (1H, H _{arom}), 6.86 m (2H, H _{arom}), 7.02 m (2H), 7.49 m (1H), 11.95 s (1H, 3-OH), 12.52 s (1H, 8-OH)
XVII	1.21 t (3H, Me CH ₂), 3.61 d.d (2H, 4-H, 10, 4), 3.70 s (3H, OMe), 4.11 q (3H, MeCH ₂), 5.32 d.d (1H, 4a-H, 5, 3.5), 6.74 m and 6.90 m (2H, H _{arom}), 7.13 m (1H, H _{arom}), 7.46 m (1H, H _{arom}), 7.65 m (2H), 8.00 m (2H), 12.47 s (1H, 3-OH)
XVIII	0.90 t (3H, Me CH ₂), 3.64 s (3H, OMe), 3.90 q (3H, MeC H ₂), 6.64 m (2H, H _{arom}), 7.05 m (2H, H _{arom}), 7.10 m (1H), 7.83 m (1H), 8.00 s (1H, 4-H), 8.10 m (1H), 11.40 s (1H, 3-OH)
XIX	1.22 t (3H, Me CH ₂), 3.60 d.d (2H, 4-H, 7, 4), 3.66 s and 3.75 s (6H, 2OMe), 4.13 q (3H, MeCH ₂), 5.24 d.d (1H, 4a-H, 4, 5.5), 6.76 m (1H, 4'-H), 6.96 m (1H, 5'-H), 7.13 m (1H, 6'-H), 7.60 m (2H, 6-H, 7-H), 7.95 m (2H, 5-H, 8-H), 12.48 s (1H, 3-OH)
XX ^a	0.94 t (3H, Me CH ₂), 3.60 s and 3.91 s (6H, 2OMe), 4.00 q (3H, MeCH ₂), 7.09 m (3H, H _{arom}), 7.83 m (2H), 8.00 s (1H, 4-H), 8.18 m (2H), 11.38 s (1H, 3-OH)

Table 3. ¹H NMR spectra of naphthoquinones VII and VIII and anthraquinones X-XV and XVII-XX in CDCl₃

^a In acetone- d_6 .

Table 4. ¹³C NMR spectra of naphthoquinones VII and VIII and anthraquinones X–XIV and XVII–XX in $CDCl_3^a$

Atom no.	Chemical shifts δ_{C} , ppm										
	VII	VIII	X	XI	XII	XIII	XVII	XIX	XIV	XVIII	XX
$\begin{array}{c} C^1 \\ C^{9a} \\ C^2 \end{array}$	184.3 130.4 150.3	183.5 129.7 151	36.3 127.8 44.5	143.3 125.9 125.4	43.9 51.8 117.7	142.6 128.5 97.9	142.8 128.8 98.1	143.0 133.9 98.4	148.8 123.7 ^b 120.2 ^b	143.5 123.5 ^b 122.0 ^b	143.5 123.5 ^b 122.0 ^b

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 37 No. 9 2001

Table 4. (0	Contd.)
--------------------	---------

Atom	Chemical shifts δ_{C} , ppm										
no.	VII	VIII	X	XI	XII	XIII	XVII	XIX	XIV	XVIII	XX
C ³	133.6	133.5	204.8	162.1	158.9	168.6	168.7	168.7	164.2 ^c	157.3	157.3
C^4	185.7	183.9	38.0	113.0	28.2	29.5	29.3	29.3	116.3	118.5	118.5
C^{4a}	123.8	123	145.5	132.3 ^b	54.3	38.1	38.4	38.9	130.1	133.4	133.4 ^c
C^5	142.7	143.6	124.8	129.3	122.1	124.2	128.0 ^b	126.0 ^b	124.7	126.9 ^c	126.9 ^d
C^{10a}			134.3	133.8 ^b	133.3	131.7	131.7 ^c	131.7 ^c	132.7	134.9 ^d	134.9 ^e
C ⁶	124	120.4	137.4	134.0 ^c	135.7	135.8	133.2 ^d	133.4 ^d	135.6	135.5 ^e	135.5 ^f
C^7	159.6	163.7	119.5	135.0 ^c	116.6	118.7	133.2 ^d	133.3 ^d	118.8	134.8 ^e	134.8 ^f
C ⁸	112.3	115.1	162.3	129.6	160.3	161.3	128.1 ^b	126.4 ^b	162.2 ^c	127.4 ^c	127.4 ^d
C ^{8a}			116.9	135.8 ^b	111.4	114.9	132.1 ^c	132.0 ^c	117.1	135.3 ^d	135.3 ^e
C ⁹			190.1	182.2	204.4	188.4	182.8	182.9	187.5	182.4	182.4
C ¹⁰			184.0	183.8	194.0	183.3	184.0	184.0	182.1	185.2	185.2
CO ₂ Et		169.8			165.5	171.2	171.2	171.2	169.8	167.2	167.2
MeCH ₂		62.0			59.7	60.4	60.5	60.6	62.0	62.1	62.1
MeCH ₂		12.9			13.9	13.6	13.8	13.9	12.9	13.9	13.9
OMe	55.3	55.4	55.6	55.7	54.3	55.5	55.5	55.4	55.5	55.5	56.1
								56.0			60.0
C ¹	135.2	138.6	146.7	137.52	126.0	140.8	139.4	139.4	138.6	139.4	133.9 ^c
$C^{2'}$	156	156.8	157.7	157.4	156.8	157.8	157.8	148.1 ^d	156.8	157.8	153.3 ^g
$C^{3'}$	110.4	109.9	112.1	111.5	108.2	111.1	111.1	152.4 ^d	109.9	111.1	149.1 ^g
$C^{4'}$	128.7 ^b	127.9 ^b	129.0 ^b	127.0 ^d	128.5 ^b	128.3 ^b	129.5 ^e	111.2	127.9 ^d	129.5 ^e	113.5
$C^{5'}$	128.9 ^b	128.6 ^b	129.5 ^b	127.4 ^d	130.6 ^b	133.3 ^b	126.5 ^e	125.5	128.6 ^d	126.5 ^e	126.6 ^h
C ^{6'}	120.7	120.4	121.4	121.29	119.3	120.1	120.1	122.7	120.4	120.1	124.1 ^h

^a The spectra of compounds **X**, **XI**, and **XX** were recorded in acetone- d_6 ; $\delta_C(2-Me)$, ppm: 16.8 (**VII**), 17.0 (**VIII**); $\delta_C(Me_3SiO) 0$ ppm.

^{b-h} Alternative assignment is possible (within a single column).

c. By reaction of 2.21 mmol of juglone (**IX**) and 2.44 mmol of diene **V** in 20 ml of benzene containing 0.12 mmol of $Eu(fod)_3$ as catalyst (reaction time 26 h) we obtained compounds **XIII** (yield 19%) and **XIV** (yield 51%).

2-Ethoxycarbonyl-3,8-dihydroxy-1-(2-methoxyphenyl)-1,4,4a,9a-tetrahydro-9,10-anthraquinone (XV). A 50-mg portion of compound XII was dissolved in 5 ml of methanol, and the solution was evaporated. According to the ¹H NMR data, the residue was a mixture of compounds XV and XII at a ratio of 9:1.

Alkaline treatment of compound XII. To 102 mg of compound XII we added 10 ml of methanol and 5 mg of K_2CO_3 , and the mixture (which turned green) was stirred for 2 h. The finely crystalline precipitate was filtered off. Yield of compound XIII 73 mg

(84%). According to the ¹H NMR data, the filtrate contained a mixture of compounds **XIII** and **XV** at a ratio of 3:2.

REFERENCES

- 1. Brownbridge, P., Synthesis, 1983, no. 2, pp. 85-104.
- Danishefsky, S.J., de Minno, T.P., and Chen, S., J. Am. Chem. Soc., 1988, vol. 110, no. 12, pp. 3929– 3940; Olsen, K.R., Feng, X., Campbele, M., Shao, R., and Math, S.K., J. Org. Chem., 1995, vol. 60, no. 19, pp. 6025–6031; Krohn, K., Angew. Chem., 1986, vol. 98, no. 9, pp. 788–805; Adeva, M., Caballero, E., Garsia, F., Medarde, M., Sahagun, H., and Tome, F., Tetrahedron Lett., 1997, vol. 38, no. 39, pp. 6893–6896; Smith, E.M., Tetrahedron Lett., 1999, vol. 40, no. 17, pp. 3228–3288.

- 3. Thompson, R.H., *Naturally Occuring Quinones. III. Recent Advances*, New York: Chapman and Hall, 1987.
- 4. *Human Medicinal Agents from Plants*, Kinghorn, A.D. and Balendrin, M.F., Eds., Washington: ACS Symposium Series 534, 1993, pp. 181–189.
- Tolstikov, G.A., Shul'ts, E.E., Safarova, G.M., Spirikhin, L.V., and Panasenko, A.A., *Zh. Org. Khim.*, 1990, vol. 26, no. 6, pp. 1283–1295.
- Shul'ts, E.E., Petrova, T.N., Rybalova, T.V., Gatilov, Yu.V., and Tolstikov, G.A., *Russ. J. Org. Chem.*, 1998, vol. 34, no. 6, pp. 845–855.
- Organikum. Organisch-Chemisches Grundpraktikum, Berlin: Wissenschaften, 1976, 15th ed. Translated under the title Organikum, Moscow: Mir, 1979, vol. 2, pp. 138–150.
- Huang, P., Isayan, K., Sarkissian, A., and Oh, T., J. Org. Chem., 1998, vol. 63, no. 13, pp. 4500–4502.
- Hofle, G., *Tetrahedron*, 1977, vol. 33, no. 15, pp. 1963–1970.
- 10. Kobayashi, M., Teriu, Y., Tori, K., and Tsuji, N., *Tetrahedron Lett.*, 1976, no. 8, pp. 619–620.
- 11. Corey, E.J. and Shimoji, K., *Tetrahedron Lett.*, 1983, vol. 24, no. 2, pp. 169–172.